您现在的位置:新闻首页>PK10统计

使用Python进行描述性统计

2018-08-18 09:21编辑:hjky.net人气:


2 使用NumPy和SciPy进行数值分析 2.1 基本概念

  与Python中原生的List类型不同,Numpy中用ndarray类型来描述一组数据:

1 from numpy import array 2 from numpy.random import normal, randint 3 #使用List来创造一组数据 4 data = [1, 2, 3] 5 #使用ndarray来创造一组数据 6 data = array([1, 2, 3]) 7 #创造一组服从正态分布的定量数据 8 data = normal(0, 10, size=10) 9 #创造一组服从均匀分布的定性数据 10 data = randint(0, 10, size=10)

2.2 中心位置(均值、中位数、众数)

  数据的中心位置是我们最容易想到的数据特征。借由中心位置,我们可以知道数据的一个平均情况,如果要对新数据进行预测,那么平均情况是非常直观地选择。数据的中心位置可分为均值(Mean),中位数(Median),众数(Mode)。其中均值和中位数用于定量的数据,众数用于定性的数据。

  对于定量数据(Data)来说,均值是总和除以总量(N),中位数是数值大小位于中间(奇偶总量处理不同)的值:

使用Python进行描述性统计

  均值相对中位数来说,包含的信息量更大,但是容易受异常的影响。使用NumPy计算均值与中位数:

1 from numpy import mean, median 2 3 #计算均值 4 mean(data) 5 #计算中位数 6 median(data)

  对于定性数据来说,众数是出现次数最多的值,使用SciPy计算众数:

1 from scipy.stats import mode 2 3 #计算众数 4 mode(data)

2.3 发散程度(极差、方差、标准差、变异系数)

  对数据的中心位置有所了解以后,一般我们会想要知道数据以中心位置为标准有多发散。如果以中心位置来预测新数据,那么发散程度决定了预测的准确性。数据的发散程度可用极差(PTP)、方差(Variance)、标准差(STD)、变异系数(CV)来衡量,它们的计算方法如下:

使用Python进行描述性统计

  极差是只考虑了最大值和最小值的发散程度指标,相对来说,方差包含了更多的信息,标准差基于方差但是与原始数据同量级,变异系数基于标准差但是进行了无量纲处理。使用NumPy计算极差、方差、标准差和变异系数:

1 from numpy import mean, ptp, var, std 2 3 #极差 4 ptp(data) 5 #方差 6 var(data) 7 #标准差 8 std(data) 9 #变异系数 10 mean(data) / std(data)

2.4 偏差程度(z-分数)

  之前提到均值容易受异常值影响,那么如何衡量偏差,偏差到多少算异常是两个必须要解决的问题。定义z-分数(Z-Score)为测量值距均值相差的标准差数目:

使用Python进行描述性统计

  当标准差不为0且不为较接近于0的数时,z-分数是有意义的,使用NumPy计算z-分数:

1 from numpy import mean, std 2 3 #计算第一个值的z-分数 4 (data[0]-mean(data)) / std(data)

  通常来说,z-分数的绝对值大于3将视为异常。

2.5 相关程度

  有两组数据时,我们关心这两组数据是否相关,相关程度有多少。用协方差(COV)和相关系数(CORRCOEF)来衡量相关程度:

使用Python进行描述性统计

  协方差的绝对值越大表示相关程度越大,协方差为正值表示正相关,负值为负相关,0为不相关。相关系数是基于协方差但进行了无量纲处理。使用NumPy计算协方差和相关系数:

(来源:网络整理)

织梦二维码生成器
已推荐
0
  • 凡本网注明"来源:的所有作品,版权均属于中,转载请必须注明中,http://www.hjky.net。违反者本网将追究相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。






图说新闻

更多>>